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SUPPLEMENTARY MATERIAL: FURTHER RESULTS FROM OPEN, SENSITIVITY 

ANALYSES TO COMPARE METHODS OF ADJUSTING RELATIVE RISK ESTIMATES FOR 

DIETARY MEASUREMENT ERROR, COMMENTS ON SIGNAL ATTENUATION AND 

UNMEASURED CONFOUNDERS, AND FURTHER NOTES ON THE REGRESSION 

CALIBRATION ADJUSTMENT   

 

Introduction 

In Table 2 of the main text, estimated attenuation factors are presented for a model with 

log-transformed protein density, potassium density, and energy intakes as the explanatory 

variables. Two sets of estimates are shown; those based on recovery biomarker 

measurements are thought to be unbiased, while those based on 24-hour recall 

assessments may be biased. Supplementary Table 1 shows corresponding estimates of 

contamination factors for this model, and for a model with one additional nutrient 

density. In Table 2 and Supplementary Table 1 there are some apparent differences 

between the estimates based on recovery biomarkers and those based on 24-hour recalls. 

However, the impact of these differences and their implications for the choice of method 

to be used to adjust relative risk estimates for dietary measurement error are not 

immediately clear. Here we examine the implications of the results shown in those tables, 

using sensitivity analysis. We also give more explanations regarding signal attenuation 

and unmeasured confounders, regression calibration adjustment, and the design of 

appropriate validation studies.  

  Note that the results shown in all tables in the main text and Supplementary 

Material relate to models with energy, protein and potassium (and in some cases one 
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other nutrient). Models with fewer nutrient variables, such as protein and energy alone, 

were also run with similar results (results not shown here).  

 

Specific Aims  

The central questions are whether and, if so, how best to adjust relative risk estimates 

from a nutritional cohort study employing a food frequency questionnaire (FFQ) as the 

main dietary assessment tool, where the validation data available include one or more 24-

hour recalls as the reference instrument?  The relative risk estimation methods that are to 

be compared are: 1) no adjustment for measurement error; 2) univariate regression 

calibration adjustment based on a 24-hour recall reference instrument, using the method 

of Rosner et al. (1); 3) multivariate regression calibration adjustment based on a 24-hour 

recall reference instrument, using the method of Rosner et al. (1). 

 

Regression Calibration Adjustment by the Rosner et al. Method   

Suppose that the disease model of interest is as follows: 
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where D is the disease indicator, 1X  is log(protein density), 2X  is log(potassium 

density), 3X  is log(energy), and 1Z ,…., pZ  are p confounder variables that are exactly 

measured.  

In practice the exact nutritional intakes, 1X , 2X , and 3X are unavailable and are 

assessed using a FFQ to give values 1W , 2W , and 3W , respectively. Using these in place of 

their unknown exact values, the logistic regression model [1] is run and estimates 
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of 1 , 2 , and 3  are obtained. Denote these estimates by *

1̂ , *

2̂ , and *

3̂ , respectively, 

where the superscript * denotes that the model is fit to error-prone covariates. We call 

these the unadjusted estimates of the log relative risks, and they are known to be biased.   

Our proposed "univariate" adjustment is to divide each unadjusted estimate by the 

attenuation factor for that variable, as estimated from the validation study. This is the 

same as applying the Rosner et al. adjustment for a model with a single error-prone 

variable to each of the error-prone variables in the multivariate model [1]. The validation 

study provides, in a subset of participants, reference measurements for 1X , 2X , and 3X , 

which we denote by 1R , 2R , and 3R , respectively. We assume here that these are 24-hour 

recall assessments. The estimate for the attenuation factor for the variable 1W , for 

example, is the estimated coefficient of 1W in the regression of 1R  on 1W  and 1Z ,…., pZ . 

Denote the estimated attenuation factors for 1W , 2W and 3W  by 1̂ , 2̂ , and 3̂ , respectively. 

Thus, the three log relative risks adjusted by the univariate method are 1

*

1
ˆ/ˆ  , 2

*

2
ˆ/ˆ  , 

and 3

*

3
ˆ/ˆ  , respectively. Note that this method uses only attenuation factors to adjust the 

log relative risk estimates. Contamination coefficients are ignored, assuming them to be 

close to zero.  

Multivariate adjustment by the Rosner et al. method employs estimates of both 

attenuation and contamination factors, as estimated from the validation study. Denote the 

vector of unadjusted log relative risk estimates ( *

1̂ , *

2̂ , *

3̂ )' by *̂ . We apply the inverse 

of the estimated "attenuation–contamination" matrix to this vector to obtain the adjusted 

log relative risk estimates. In our case, this matrix has three rows and three columns. The 

first row contains the estimated coefficients of the variables 1W , 2W  , and 3W  in the 
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regression of 1R  on 1W , 2W , 3W  , and 1Z ,…., pZ . The second row contains the estimated 

coefficients of the variables 1W , 2W  , and 3W  in the regression of 2R  on 1W , 2W , 3W  , and 

1Z ,…., pZ , and similarly the third row. Denote this matrix by ̂ . The diagonal elements 

of the matrix are estimated attenuation factors, and the off-diagonal elements are 

estimated contamination factors. The multivariate-adjusted estimates of the log relative 

risks are given by the vector   *
1 ˆ'ˆ 


 . 

 

Sensitivity Analysis 

Model with protein density, potassium density, and energy. The univariate 

attenuation factors, 1 , 2 , and 3 , estimated from OPEN data were as follows. Using 

recovery biomarker data as the reference: for men (0.40, 0.49, 0.08); for women (0.32, 

0.57, 0.04). Using 24-hour recall data as the reference: for men (0.41, 0.51, 0.23); for 

women (0.50, 0.58, 0.13). 

For the multivariate factors, the diagonal and off-diagonal elements of the matrix 

 are given by the entries in Table 2 of the main text and in the rows for the first three 

nutrients (energy, protein and potassium) in Supplementary Table 1, respectively. 

Recovery biomarker-based estimates and 24HR-based estimates are both provided in 

these tables. Note that although some of the contamination factors are not statistically 

significant (as noted in the main text), we nevertheless build the simulation on the basis 

of these non–statistically significant estimates. Due to its limited sample size, the OPEN 

study did not have enough power to find very small contamination factors statistically 

significantly different from zero. Therefore, setting all non–statistically significant values 
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equal to zero would have yielded an over-optimistic evaluation of the performance of the 

24-hour recall.    

To assess the impact on estimated log relative risks from using adjustment 

methods based on a 24-hour recall reference, we needed to postulate the true values 

of 1 , 2 , and 3 . Because these values are, of course, unknown, and because the OPEN 

study was a stand-alone validation study and not linked to a specific cohort, we chose a 

series of combinations of 1 , 2 , and 3 , and for each combination we calculated the 

expected bias that would accrue from use of the 24-hour recall as the reference. 

Specifically, our steps were: First, choose  =( 1 , 2 , 3 )'.  Second, calculate ' , 

where  is the estimate derived from the recovery biomarkers; this calculation gives the 

expected value of *̂ = ( *

1̂ , *

2̂ , *

3̂ )' the unadjusted estimates of the log relative risks.  

Third, apply the three adjustment methods to these values, which yields: '  for no 

adjustment;  )24(

33

)24(

22

)24(

11 /)'(,/)'(,/)'( HRHRHR    for the univariate 

adjustment (ie, each element of '  divided by the corresponding 24-hour recall–based 

estimate of the univariate attenuation factor; and   '
1'

24 


HR for the multivariate 

adjustment, where HR24 is the 24-hour recall–based estimate of the attenuation-

contamination matrix. Fourth, calculate the difference between each of the values 

calculated in third step and the true log relative risk, as chosen in the first step; this gives 

the bias in estimating each log relative risk from each method.   

The combinations of values of  =( 1 , 2 , 3 )' chosen were as follows. Three 

relative risk values between an individual at the 90
th

 percentile of intake versus one at the 

10
th

 percentile of intake (0.5, 1, and 2) were considered for protein density and potassium 
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density and two relative risk values (1 and 2) for energy.  This gave 18 (ie, 3×3×2) 

combinations. However, the null combination, where all three relative risks were equal to 

1.0, was omitted, leaving 17 combinations in total. The   values for each relative risk 

were computed by the formula )56.2/()ln( TRR   , where RR is the specified relative 

risk and T is the standard deviation of the true intake on the log scale. The latter was 

estimated for each of the intakes from data in the OPEN study.  

Results were summarized over the 17 combinations for each method, by taking 

the square root of the mean of the squared biases. We call this “the root mean square 

bias.” We provided this measure also for the restricted set of estimates of coefficients that 

were truly nonzero (2×3×2 = 12 cases per nutrient), these being the most important from 

a public health perspective.   

  Supplementary Table 2 shows the results for the full set of combinations. Both 

adjustment methods perform better, on average, than the unadjusted method. In addition, 

the univariate method appears to perform better than the multivariate method. 

Supplementary Table 3 shows the results restricted to the set of nonzero coefficients. 

Again, the adjustment methods perform better on average than the unadjusted method, 

with the improvement larger in this set of cases. For males, the univariate method 

performs better than the multivariate method, whereas for females, the two methods 

perform similarly.  

 

Model with protein density, potassium density, carbohydrate density, and 

energy.  To extend the results of the previous section, we investigated biases in log 

relative risks for a model with four nutrient variables, that is, carbohydrate density in 
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addition to those in the previous three-nutrient model. With inclusion of this extra 

variable, the attenuation–contamination matrices increase in size from 3×3 to 4×4.  

Because there is no known recovery biomarker for carbohydrates, the true value 

of its attenuation factor is unknown and, likewise, the true contamination factors for the 

carbohydrate column of the attenuation–contamination matrix are unknown. We assumed 

that the attenuation factor is 0.50 and the contamination factors are zero. The other 

elements were estimated from the OPEN study data. The full attenuation–contamination 

matrix is shown in Supplementary Table 4, together with that estimated from the 24-hour 

recall data.    

As with the three-nutrient model, combinations of values of  =( 1 , 2 , 3 , 4 )' 

were chosen. Relative risks of 0.5, 1, and 2 between an individual at the 90
th

 percentile of 

intake versus one at the 10th percentile of intake were considered for protein density, 

potassium density, and carbohydrate density, and relative risks of 1 and 2 were 

considered for energy.  This gave 54 (ie, 3×3×3×2) combinations. However, we omitted 

the null combination, where all three relative risks were equal to 1.0, which left 53 

combinations in total.   

Results were summarized over these 53 combinations for each method, as 

previously described, and also over the set of nonzero coefficients (2×3×3×2 = 36 cases 

per nutrient), and are shown in Supplementary Tables 5 and 6. In Supplementary Table 5, 

for males, the root mean square bias, averaged over all nutrients, was lower for the 

adjustment methods than for the unadjusted method, although for potassium density, the 

root mean square bias for the multivariate adjustment was not lower than for the 

unadjusted method. For females, the root mean square bias averaged over all nutrients 
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was again lower for the univariate adjustment than for the unadjusted method, but this 

was not true for the multivariate adjusted method. For potassium density, neither 

adjustment method had a lower root mean square bias than for no adjustment. For 

nonzero coefficients (Supplementary Table 6), both adjustment methods had, on average 

lower root mean square bias than the unadjusted method, although once again this did not 

apply in the specific case of potassium density for females.  

 

Summary and Conclusions Regarding Adjustment of Relative Risks for 

Measurement Error 

Taking all of the results into account while giving primacy to the results in 

Supplementary Tables 2 and 3, because all the attenuation and contamination factors in 

those tables were based on real data, we conclude that adjusting the estimates, even with 

an imperfect reference instrument, such as a 24-hour recall or food record, is a strategy to 

be preferred to no adjustment. The adoption of the strategy should lead, on average, to 

better estimation of relative risks in FFQ cohort studies.  

In the sensitivity analyses presented, the univariate method of adjustment 

performed better on average than the multivariate method for males, and the two methods 

performed similarly for females. However, we have not recommended that investigators 

always use the univariate method in preference to the multivariate method, for the 

following reason. The model that we were able to investigate fully, that including protein 

density, potassium density, and energy, had somewhat larger discrepancies between the 

biomarker-based and 24-hour recall–based contamination factors than those shown, on 

average, in Supplementary Table 1. For the 12 factors estimated for this model, the mean 
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discrepancy was 0.09, compared with a mean discrepancy of 0.06 for the other 

contamination factors shown in that table. Thus, it is possible that in analyses of other 

nutrients the univariate method may not show the same advantage over the multivariate 

method in terms of the root mean square bias seen in the analyses presented here.  

This reasoning leads to the recommendation given in the main text, namely: given 

the current evidence, statistical adjustment of relative risks based on validation data using 

24-hour recalls or multiple-day food records as a reference instrument, may be performed 

using either univariate or multivariate regression calibration. The former method, albeit 

simpler, should be used only for energy-adjusted food and nutrient intakes, as we did here 

in the sensitivity analyses. 

 Although other exposures or confounders of common epidemiological interest, 

such as hormone use, are also measured with error, we have focused on dietary intake 

because the general perception is that dietary measurement error is larger, and 

consequently has greater impact. Physical activity may represent an exposure with similar 

measurement problems to dietary exposure, and its measurement is now being 

increasingly researched. Once a body of background knowledge has accumulated with 

regard to the errors in the measurement of physical activity, it may be possible to provide 

similar guidelines for the analysis of this exposure and perhaps even the combined 

analysis of dietary intake and physical activity. 

   

Signal Attenuation and Unmeasured Confounders 

We discuss here in more detail the problem of high attenuation, which results in small 

observed relative risks (eg, 1.15) that are statistically significant because of a large 
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sample size. As mentioned in the main text, it is difficult to know whether such an 

association is due to the dietary intake of interest or unmeasured confounders. Deeper 

analysis of the problem reveals two types of confounder.  First, unmeasured confounders 

in the model that links disease to true usual dietary intake (type A confounders) have the 

same relative impact on the detection of dietary effects whether or not the dietary intake 

is measured with error. For example, suppose the true log relative risk (RR) for a 

specified change in dietary intake is 0.45 (RR = 1.57) and unmeasured confounders cause 

the log relative risk to be estimated as 0.54 (RR = 1.72) (a 20% overestimation). Suppose 

also that there is nondifferential dietary measurement error that attenuates the observed 

log relative risk from 0.45 to 0.15 (RR = 1.16). Then the same measurement error will 

also attenuate the effect of unmeasured confounding, so that the confounding will cause 

the 0.15 to be estimated as 0.18 (RR = 1.20), which remains a 20% overestimation. 

Likewise, if the true dietary effect is null, then although the unmeasured confounders 

might yield an estimated log relative risk of 0.09 (RR = 1.09) if dietary intake was 

measured accurately, the same unmeasured confounding would yield a log relative risk of 

only 0.03 (RR = 1.03) in a model with self-reported dietary intake. This means that 

unmeasured confounding of this type is not a special concern regarding attenuated dietary 

relative risks because the effects of the unmeasured confounding are attenuated by the 

same degree as the dietary effect itself.  

 Second, unmeasured confounders that are not of type A but are confounders in the 

model linking disease to reported usual dietary intake (type B confounders) have a 

potentially stronger effect than those of type A. It seems especially feasible that 

unmeasured confounding of this sort could give rise to relative risks that, although not 
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high, are of the same order of magnitude as highly attenuated dietary relative risks. This 

is because in such cases, the measurement error accounts for a large part of the variation 

in the dietary report, and this variation arises from unknown sources, some of which 

could be associated with disease risk. Furthermore, such confounding, unlike that of type 

A, is not attenuated by the dietary measurement error; indeed, it arises from the 

measurement error itself.  

Clearly, the best way to eliminate such concerns is to find methods of increasing 

the precision with which we measure dietary intake.  

 

Further Notes on the Regression Calibration Adjustment and the Design of 

Validation Studies 

The simplest form of the regression calibration adjustment involves 1) estimation of the 

attenuation factor, and 2) dividing the regression coefficient for the dietary intake of 

interest (derived from running the disease model with reported dietary intake) by the 

estimated attenuation factor.  Because attenuation factors are small (often as low as 0.3), 

this adjustment can cause an appreciable increase (often as much as threefold or higher) 

in the estimated coefficient.  Consequently, it is important that the attenuation factor is 

estimated fairly precisely, because a large error, especially one that reduces the estimated 

attenuation factor, can lead to unreasonably inflated estimates of dietary effects together 

with very wide confidence intervals. Therefore, validation studies should include at least 

several hundred participants to enable the attenuation (and contamination) factors to be 

estimated with acceptable precision, with standard errors less than 0.05 whenever 

possible.   
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  A second challenge to regression calibration adjustment is related to the type B 

confounders described in the previous subsection. These confounders create a challenge 

to the regression calibration adjustment because they induce differential measurement 

error, which in turn causes bias in the estimated attenuation factor. As mentioned in the 

main text, differential measurement error is less likely to occur in cohort studies than in 

case–control studies. However, it cannot be completely ruled out and investigators should 

be aware that its effects could possibly reduce or increase the estimate of the attenuation 

factor by 25%, or, at the maximum, up to 50%. For this reason, attenuation factors for 

energy-adjusted intakes that appear unusually low (say, less than 0.20) should be viewed 

with caution. In these cases, the regression calibration adjustment will yield very 

uncertain estimates.    

 A further challenge to the regression calibration adjustment arises from the 

difference in the period covered by the main study instrument (FFQ) and the reference 

instrument. While the FFQ usually covers a period of several months up to 1 year, the 

reference instrument (usually 24-hour recall or multiple-day food record) covers a period 

of 1 day up to several days. If the intake of interest is a food or nutrient that is consumed 

regularly and at approximately the same frequency throughout the year, and the reference 

instrument is applied within the period covered by the FFQ (or even shortly before or 

after this period), then one can assume that the intake reported on the reference 

instrument measures the same level of intake that occurred during the period covered by 

the FFQ. However, if the intake of interest has seasonal variation, as can occur with fruits 

or vegetables that are available to the population only at specific periods during the year, 

then the timing of the reference instrument must be chosen more carefully. In such cases, 
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the reference instrument should be applied so that there is a uniform distribution of 

applications across the whole year (ie, approximately equal numbers of participants 

should complete the reference instrument in each season of the year). Note that it is not 

necessary that each participant complete the reference instrument in each season. Indeed, 

a single administration of the reference instrument to each participant is sufficient, as 

long as these administrations are evenly spread out over the seasons. This precaution will 

allow unbiased estimation of the attenuation coefficient that is required in the regression 

calibration adjustment from the validation study data. In addition, to offset the extra 

within-person variation in the daily consumption of these nutrients, it is advisable either 

to increase the sample size of the validation study or to include repeat assessments of 

participants using the reference instrument.  

The remarks above regarding the need to accommodate seasonal variation in 

consumption in the design of the validation study apply generally to other variations in 

intake over time (eg, the tendency for persons to consume more on weekends than on 

weekdays).  If the intake of interest is a food or nutrient that is consumed episodically (ie, 

one that is not consumed every day by a substantial proportion of the population), then 

more care is required with the validation study design. In this case, it is advisable to 

include repeat measurements of the reference instrument in at least a subgroup of the 

participants. Moreover, this subgroup should be large enough that a reasonably large 

number (ie, at least 50 participants) report intake of the target food or nutrient on more 

than one administration of the reference instrument. However, not every participant needs 

to report intake of the target on at least one administration of the reference instrument. 

The special methods that are used to estimate the attenuation coefficient for this type of 
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intake are described by Midthune et al. (2), and software for conducting such analyses is 

available online at http://riskfactor.cancer.gov/diet/usualintakes/. 

 Sometimes linear regression calibration may not provide the best prediction of 

usual intake and a nonlinear model is more appropriate. In these cases, nonlinear 

regression calibration may provide increased power to detect dietary–disease 

associations. This matter is a topic for further research.   
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